Abstract

High-dimensional entangled states and quantum repeaters are important elements in efficient long-range quantum communications. The high-dimensional property associated with the orbital angular momentum (OAM) of each photon improves the bandwidth of the quantum communication network. However, the generation of high-dimensional entangled states by the concentration method reduces the brightness of the entangled light source, making extensions to these higher dimensions difficult. To overcome this difficulty, we propose to generate entangled qutrits in the OAM space by loading the pump light with OAM. Compared with the concentration method, our experimental results show that the rate of generation of photon pairs improves significantly with an observed 5.5-fold increase. The increased generation rate provides the system with the ability to resist the noise and improve the fidelity of the state. The S value of the Clauser-Horne-Shimony-Holt inequality increases from 2.48 ± 0.07 to 2.69 ± 0.04 under the same background noise, and the fidelity of the reconstructed density matrix improves from 57.8 ± 0.14% to 70 ± 0.17%. These achievements exhibit the enormous advantages of high-dimensional entanglement generation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.