Abstract
Orientation and stretch of entangled polymers under large step shear deformations were investigated through primitive chain network simulations. In the simulations, entangled polymer dynamics is described by 3D motion of entanglements, 1D sliding of monomers along the chain, and creation/destruction of entanglements described by hooking/unhooking with surrounding chains at chain ends. In addition to the conventionally proposed relaxation mechanisms that are reptation, contour length fluctuations, and constraint release (both thermal and convective), the simulations also account for force balance among entanglement strands converging to an entanglement node, and nodes also fluctuate in space. Nonlinear step strain data for monodisperse polystyrene melts (Ferri and Greco, Macromolecules, 37:5931, 2006) were quantitatively reproduced by using the same two molecular-weight-independent parameters already adopted by Masubuchi et al. (J Non-Newt Fluid Mech, 149:87, 2008) to fit linear viscoelastic data of several monodisperse polystyrene melts. Analysis of the orientation tensor and of the chain stretch ratio indicates that the segment orientation and stretch realized in the simulation are quantitatively described by a simple three-chain model (Marrucci et al., Macromol Symp, 158:57, 2000a).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.