Abstract
We theoretically propose the measurement of phonon entanglement as a tool to study the quantum dynamics of atomic Bose-Einstein condensates. In particular, we show that nonseparability of the phonon modes offers a unambiguous signature of the quantum origin of the phonon emission by analog Hawking and dynamical Casimir processes. The method is numerically validated by applying a generalized Peres-Horodecki criterion to a truncated Wigner description of the condensate. Viable strategies to implement the proposed scheme in state-of-the-art experiments are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.