Abstract

A central theme in chemistry is the understanding of the mechanisms that drive chemical transformations. A well-known, highly cited mechanism in organometallic chemistry is the superexchange mechanism in which unpaired electrons on two or more metal centers interact through an electron pair of the bridging ligand. We use a combination of novel synthesis and computation to show that such interactions may in fact occur by a more direct mechanism than superexchange that is based on direct quantum entanglement of the two metal centers. Specifically, we synthesize and experimentally characterize a novel cobalt dimer complex with benzoquinoid bridging ligands and investigate its electronic structure with the variational two-electron reduced density matrix method using large active spaces. The result draws novel connections between inorganic mechanisms and quantum entanglement, thereby opening new possibilities for the design of strongly correlated organometallic compounds whose magnetic and spin properties have applications in superconductors, energy storage, thermoelectrics, and spintronics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.