Abstract

Entangled networks of stiff biopolymers exhibit complex dynamic response, emerging from the topological constraints that neighboring filaments impose upon each other. We propose a class of reference models for entanglement dynamics of stiff polymers and provide a quantitative foundation of the tube concept for stiff polymers. For an infinitely thin needle exploring a planar course of point obstacles, we have performed large-scale computer simulations proving the conjectured scaling relations from the fast transverse equilibration to the slowest process of orientational relaxation. We determine the rotational diffusion coefficient of the tracer, its angular confinement, the tube diameter, and the orientational correlation functions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.