Abstract

Issues. Structural cable monitoring systems are widely used to diagnose the condition of cable-stayed bridges. Known methods of non-destructive control of the stressed state cannot in some cases be fully used, or their use is difficult and economically impractical or inefficient. The aim of the study. A model is offered that allows you to ensure the reliability of the rope with many degrees of damage. Method. The most convenient method for monitoring the mechanical parameters of cable ropes is the electrical resistance method. The results. The results of the dependence of the stress and current distribution on the rope parameters are presented. The researched method will increase the reliability, safety and service life of cable-stayed bridges. Scientific novelty. Our work consists in studying the impact of breaking the cables that make up cable ropes. For this, a model was created that allows you to combine several parameters (specific resistance and electrical conductivity, length, number of cables). We considered the case for removing the signal from one end of the cable. Practical significance. It is established that when changing the length of the resistance application and the number of cables, a change in the graph for the undamaged and damaged cable is displayed. The number and row in which the burst occurred were analyzed. In this way, the system that monitors one cable notifies about destruction and makes it possible to prevent it.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.