Abstract

Abstract— Enstatite meteorites are highly reduced rocks that consist of major, nearly FeO‐free enstatite, variable amounts of metallic Fe, Ni and troilite, and a host of rare minerals formed under highly‐reducing conditions. They are comprised of the EH and EL chondrites and the aubrites. Here I discuss some of their properties and the nature and number of their parent bodies. Conclusions: 1. EH and EL chondrites show bulk compositional differences in non‐volatile major elements that were established by nebular, not planetary processes. Occurrence of abundant breccias among them but lack of clasts of EL in EH chondrites (and vice versa) suggests that EH and EL chondrites represent two separate parent bodies. 2. Aubrites were not derived from known enstatite chondrites on the same parent bodies. Aubrites represent samples from a third enstatite meteorite parent body. 3. The aubrite parent body may have experienced collisional break‐up and gravitational reassembly of the debris into a rubble‐pile object. 4. The aubrite source material (parent body) was probably enstatite chondrite‐like in composition, but had a higher troilite/metallic Fe, Ni ratio, higher contents of titanium and diopside, and possibly less plagioclase than known enstatite chondrites. 5. Shallowater, the only non‐brecciated aubrite, does not appear to have formed on the EH, EL, or aubrite parent bodies by either internal (igneous) or external (impact) melting processes. Instead, Shallowater may be a sample from yet a fourth enstatite meteorite parent body. 6. Shallowater experienced a complex three‐stage cooling history, requiring an equally complex mode of origin: collisional break‐up of a molten or partly molten body by impact with a solid body, followed by gravitational reassembly. 7. It is unknown why some enstatite meteorite parent bodies melted (the aubrite and Shallowater bodies), and others did not (the EH and EL bodies). If unipolar dynamo induction by a primordial T Tauri sun was the dominant heat source that heated asteroidal‐sized bodies in the early Solar System, then the aubrite and Shallowater parent bodies may have melted because they were of intermediate sizes, whereas the EH and EL bodies did not melt because they were either much smaller or much larger.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.