Abstract
Abstract— La Villa is an unshocked H4 chondrite. Chemical compositions require crystallization at temperatures >1250 °C for enstatite and >1211 °C for augite. Widespread (100) polysynthetic twins and (001) contraction cracks in enstatite indicate crystallization as protoenstatite, inverted to either ortho‐ or clinoenstatite or both on cooling. High‐resolution transmission electron microscopy shows a range of ortho‐clinoenstatite intergrowths: heavily faulted clinoenstatite in radial and poikilitic chondrules, almost regular orthoenstatite in a microgranular chondrule and in the matrix. In the former, the clinoenstatite lamellae are both even or odd multiples of the 9Å periodicity, a few unit cells thick, twinned and interleaved with minor orthoenstatite. In the latter, orthoenstatite lamellae are regularly stacked for more than 2000 Å. Localized annealing effects, reversing clinoenstatite to orthoenstatite, are revealed by “U‐shaped” and “Z‐shaped” terminations. The variable microstructures suggest different cooling rates for the different chondrule types, soon after the liquidus‐to‐solidus transition (1200 to 1300 °C) but prior to accretion. In particular, clinoenstatite‐rich crystals from radial and poikilitic chondrules give cooling rates on the order of 100 and 10 °C/h. Comparisons with previous works on dynamic crystallization experiments and orthopyroxene Fe‐Mg cation ordering indicate a nonlinear cooling path from the high chondrule formation temperatures to a postaccretionary low‐temperature (340–480 °C) evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.