Abstract

Four year-long time-series sediment trap experiments were conducted along the equatorial Pacific Ocean in order to understand the biogeochemistry of particulate organic matter (POM) on the basis of amino acid (AA) and hexosamine (HA) compositions of the settling particles. Total mass flux in the study area varied over 4 orders of magnitude without a common seasonality among all trap sites. Planktonic blooms were apparent in terms of total mass and AA fluxes at the easternmost end of the Nino-4 region. AA fluxes closely followed the total mass flux profiles, suggesting that increased particle flux delivered a greater amount of labile OM to the deep ocean. A labile OM index (LI)-based classification showed that during the El Nino conditions in 2002, the eastern side of the equatorial Pacific transported relatively more labile OM than the western equatorial Pacific. An overall change in AA and HA composition of settling particles could be revealed with the help of discriminant analysis, suggesting that settling particles during El Nino were compositionally different from those settling during La Nina condition in the equatorial Pacific.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.