Abstract

Abstract The impacts of ENSO on the evolution of the East Asian monsoon have been studied using output from a general circulation model experiment. Observed monthly variations of the sea surface temperature (SST) field have been prescribed in the tropical eastern and central Pacific, whereas the atmosphere has been coupled to an oceanic mixed layer model beyond this forcing region. During the boreal summer of typical El Niño events, a low-level cyclonic anomaly is simulated over the North Pacific in response to enhanced condensational heating over the equatorial central Pacific. Advective processes associated with the cyclone anomaly lead to temperature tendencies that set the stage for the abrupt establishment of a strong Philippine Sea anticyclone (PSAC) anomaly in the autumn. The synoptic development during the onset of the PSAC anomaly is similar to that accompanying cold-air surges over East Asia. The air–sea interactions accompanying the intraseasonal variations (ISV) in the model atmosphere exhibit a strong seasonal dependence. During the summer, the climatological monsoon trough over the subtropical western Pacific facilitates positive feedbacks between the atmospheric and oceanic fluctuations. Conversely, the prevalent northeasterly monsoon over this region in the winter leads to negative feedbacks. The onset of the PSAC anomaly is seen to be coincident with a prominent episode of the leading ISV mode. The ENSO events could influence the amplitude of the ISV by modulating the large-scale flow environment in which the ISV are embedded. Amplification of the summer monsoon trough over the western Pacific during El Niño enhances air–sea feedbacks on intraseasonal time scales, thereby raising the amplitudes of the ISV. A weakening of the northeasterly monsoon in El Niño winters suppresses the frequency and strength of the cold-air surges associated with the leading ISV mode in that season. Many aspects of the model simulation of the relationships between ENSO and the East Asian monsoon are in agreement with observational findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.