Abstract
A hybrid coupled model (HCM) for the tropical Pacific ocean-atmosphere system is employed for ENSO prediction. The HCM consists of the Geophysical Fluid Dynamics Laboratory ocean general circulation model and an empirical atmospheric model. In hindcast experiments, a correlation skill competitive to other prediction models is obtained, so we use this system to examine the effects of several initialization schemes on ENSO prediction. Initialization with wind stress data and initialization with wind stress reconstructed from SST using the atmospheric model give comparable skill levels. In re-estimating the atmospheric model in order to prevent hindcast-period wind information from entering through empirical atmospheric model, we note some sensitivity to the estimation data set, but this is considered to have limited impact for ENSO prediction purposes. Examination of subsurface heat content anomalies in these cases and a case forced only by the difference between observed and reconstructed winds suggests that at the current level of prediction skill, the crucial wind components for initialization are those associated with the slow ENSO mode, rather than with atmospheric internal variability. A “piggyback” suboptimal data assimilation is tested in which the Climate Prediction Center data assimilation product from a related ocean model is used to correct the ocean initial thermal field. This yields improved skill, suggesting that not all ENSO prediction systems need to invest in costly data assimilation efforts, provided the prediction and assimilation models are sufficiently close.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.