Abstract

A hybrid coupled model (HCM) for the tropical Pacific ocean-atmosphere system is used to test the effects of physical parametrizations on ENSO simulation. The HCM consists of the Geophysical Fluid Dynamics Laboratory ocean general circulation model coupled to an empirical atmospheric model based on the covariance matrix of observed SST and wind stress anomaly fields. In this two-part work, part I describes the effects of ocean vertical mixing schemes and atmospheric spin-up time on ENSO period. Part II addresses ENSO prediction using the HCM and examines the impact of initialization schemes. The standard version of the HCM exhibits spatial and temporal evolution that compare well to observations, with irregular cycles that tend to exhibit 3- and 4-year frequency-locking behavior. Effects in the vertical mixing parametrization that produce stronger mixing in the surface layer give a longer inherent ENSO period, suggesting model treatment of vertical mixing is crucial to the ENSO problem. Although the atmospheric spin-up time scale is short compared to ENSO time scales, it also has a significant effect in lengthening the ENSO period. This suggests that atmospheric time scales may not be truly negligible in quantitative ENSO theory. Overall, the form and evolution mechanism of the ENSO cycle is robust, even though the period is affected by these physical parametrizations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.