Abstract

The most distinguishing feature of the plant cell is a DNA-containing organelle that sets plants apart from all other organisms: the chloroplast. Compelling evidence supports an endosymbiotic origin for chloroplasts. According to this theory, chloroplasts are descendants of formerly free-living cyanobacterial ancestors which entered an endosymbiotic relationship with a pre-eukaryotic cell and were ultimately integrated into the metabolism of the host cell. Chloroplasts retain many prokaryotic features and their gene expression system still closely resembles that of their eubacterial ancestors. During the past decade, our knowledge about chloroplast biology has benefited immensely from a most remarkable methodological breakthrough: the development of transformation technologies for chloroplast genomes. Moreover, recent advances in the manipulation of higher plant chloroplast genomes have created unprecedented opportunities for the genetic engineering of plants and promise to overcome many of the problems associated with conventional transgenic technologies. This review describes the state of the art in genetic engineering of higher plant chloroplast genomes and highlights the tremendous potential of these technologies for the biotechnology of the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call