Abstract
Acetylcholinesterase inhibition was modeled for a set of huprines using ensembles of Bayesian-regularized Genetic Neural Networks. In the Bayesian-regularized Genetic Neural Network approach the Bayesian regularization avoids overfitted regressions and the genetic algorithm allows exploring a wide pool of three-dimensional descriptors. The predictive capacity of our selected model was evaluated by averaging multiple validation sets generated as members of neural network ensembles. When 60 members are assembled, the neural network ensemble provides a reliable measure of training and test set R(2)-values of 0.945 and 0.850 respectively. In other respects, the ability of the nonlinear selected genetic algorithm space for differentiate the data were evidenced when total data set was well distributed in a Kohonen self-organizing map. The analysis of the self-organizing map zones allows establishing the main structural features differentiated by our vectorial space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.