Abstract

The orbitofrontal cortex (OFC) has long been implicated in the ability to use the current value of expected outcomes to guide behavior. More recently, this specific role has been conceptualized as a special case of a more general function that OFC plays in constructing a "cognitive map" of the behavioral task space by labeling the current task state and learning relationships among task states. Here, we have used single unit recording data from 2 prior studies to examine whether and how information relating different states within and across trials is represented in medial versus lateral OFC in rats. Using a hierarchical clustering analysis, we examined how neurons from each area represented information about differently valued trial types, defined by the cue-outcome pairings, versus how those same neurons represented information about similar epochs between these different trial types, such as the stimulus sample, delay, and reward consumption epochs. This analysis revealed that ensembles in the lateral OFC (lOFC) group states according to trial epoch, whereas those in the medial OFC (mOFC) organize the same states by trial type. These results suggest that the lOFC and mOFC construct cognitive maps that emphasize different features of the behavioral landscape, with lOFC tracking events based on local similarities, irrespective of their values and mOFC tracking more distal or higher order relationships relevant to value. (PsycINFO Database Record

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call