Abstract

Rapid and accurate diagnosis of intracranial hemorrhage is clinically significant to ensure timely treatment. In this study, we developed an ensembled deep neural network for the detection and subtype classification of intracranial hemorrhage. The model consisted of two parallel network pathways, one using three different window level/width settings to enhance the image contrast of brain, blood, and soft tissue. The other extracted spatial information of adjacent image slices to the target slice. Both pathways exploited the EfficientNet-B0 as the basic architecture and were ensembled to generate the final prediction. Class activation mapping was applied in both pathways to highlight the regions of detected hemorrhage and the associated subtypes. The model was trained and tested using Intracranial Hemorrhage Detection Challenge (IHDC) dataset launched by the Radiological Society of North America (RSNA) in 2019, which contained 674,258 head noncontrasts computer tomography images acquired from 19,530 patients. An independent dataset (CQ500) acquired from another institution was used to test the generalizability of the trained model. The overall accuracy, sensitivity, and F1 score for intracranial hemorrhage detection were 95.7%, 85.9%, and 86.7% on IHDC testing dataset and 92.4%, 92.6%, and 93.4% on external CQ500 testing dataset. The heatmaps by class activation mapping successfully demonstrated discriminative feature regions of the predicted hemorrhage locations and subtypes, providing visual guidance for radiologists to assist in rapid diagnosis of intracranial hemorrhage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.