Abstract

Centrifugal slurry pumps are widely used in the oil sand industry, mining, ore processing, waste treatment, cement production, and other industries to move mixtures of solids and liquids. Wear of slurry pump components, caused by abrasive and erosive solid particles, is one of the main causes of reduction in the efficiency and useful life of these pumps. This leads to unscheduled outages that cost companies millions of dollars each year. Traditional maintenance strategies can be applied, but they provide insufficient warning of impending failures. On the other hand, condition monitoring and on-line assessment of the wear status of wetted components in slurry pumps are expected to improve maintenance management and generate significant cost savings for pump operators. In this context, the objective of the present work is to develop and compare two unsupervised clustering ensemble methods, i.e., fuzzy C-means and hierarchical trees, for the assessment and measurement of the wear status of slurry pumps when available data is extremely limited. The idea is to combine predictions of multiple classifiers to reduce the variance of the results so that they are less dependent on the specifics of a single classifier. This will also reduce the variance of the bias, because a combination of multiple classifiers may learn a more expressive concept class than a single classifier.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.