Abstract

Protein structure classification is an important issue in understanding the associations between sequence and structure as well as possible functional and evolutionary relationships. Recently structural genomes initiatives and other high-throughput experiments have populated the biological databases at a rapid pace. In this paper, three types of classifiers, k nearest neighbors, class center and nearest neighbor and probabilistic neural networks and their homogenous ensemble for multiclass protein fold recognition problem are evaluated firstly, and then a heterogenous ensemble Voting System is designed for the same problem. The different features and/or their combinations extracted from the protein fold dataset are used in these classification models. The heterogenous classification results are then put into a voting system to get the final result. The experimental results show that the proposed method can improve prediction accuracy by 4%–10% on a benchmark dataset containing 27 SCOP folds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.