Abstract
Automatic and reliable fault diagnosis of rotating machinery cross working conditions is of practical importance. For this purpose, ensemble transfer convolutional neural networks (CNNs) driven by multi-channel signals are proposed in this paper. Firstly, a series of source CNNs modified with stochastic pooling and Leaky rectified linear unit (LReLU) are pre-trained using multi-channel signals. Secondly, the learned parameter knowledge of each individual source CNN is transferred to initialize the corresponding target CNN which is then fine-tuned by a few target training samples. Finally, a new decision fusion strategy is designed to flexibly fuse each individual target CNN to obtain the comprehensive result. The proposed method is used to analyze multi-channel signals measured from rotating machinery. The comparison result shows the superiorities of the proposed method over the existing deep transfer learning methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.