Abstract

Few-shot learning aims to solve the difficulty in obtaining training samples, leading to high variance, high bias, and over-fitting. Recently, graph-based transductive few-shot learning approaches supplement the deficiency of label information via unlabeled data to make a joint prediction, which has become a new research hotspot. Therefore, in this paper, we propose a novel ensemble semi-supervised few-shot learning strategy via transductive network and Dempster-Shafer (D-S) evidence fusion, named ensemble transductive propagation networks (ETPN). First, we present homogeneity and heterogeneity ensemble transductive propagation networks to better use the unlabeled data, which introduce a preset weight coefficient and provide the process of iterative inferences during transductive propagation learning. Then, we combine the information entropy to improve the D-S evidence fusion method, which improves the stability of multi-model results fusion from the pre-processing of the evidence source. Third, we combine the L2 norm to improve an ensemble pruning approach to select individual learners with higher accuracy to participate in the integration of the few-shot model results. Moreover, interference sets are introduced to semi-supervised training to improve the anti-disturbance ability of the mode. Eventually, experiments indicate that the proposed approaches outperform the state-of-the-art few-shot model. The best accuracy of ETPN increases by 0.3% and 0.28% in the 5-way 5-shot, and by 3.43% and 7.6% in the 5-way 1-shot on miniImagNet and tieredImageNet, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call