Abstract
In this paper, we develop two ensemble time-stepping algorithms to solve the convection-diffusion equation with random diffusion coefficients, forcing terms and initial conditions based on the pseudo-spectral stochastic collocation method. The key step of the pseudo-spectral stochastic collocation method is to solve a number of deterministic problems derived from the original stochastic convection-diffusion equation. In general, a common way to solve the set of deterministic problems is by using the backward differentiation formula, which requires us to store the coefficient matrix and right-hand-side vector multiple times, and solve them one by one. However, the proposed algorithm only need to solve a single linear system with one shared coefficient matrix and multiple right-hand-side vectors, reducing both storage required and computational cost of the solution process. The stability and error analysis of the first- and second-order ensemble time-stepping algorithms are provided. Several numerical experiments are presented to confirm the theoretical analyses and verify the feasibility and effectiveness of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.