Abstract

Tuberculosis (TB) is an infectious disease affecting humans' lungs and is currently ranked the 13th leading cause of death globally. Due to advancements in technology and the availability of medical datasets, automatic analysis and classification of chest X-rays (CXRs) into TB and non-TB can be a reliable alternative for early TB screening. We propose an automatic TB detection system using advanced deep learning (DL) models. A substantial part of a CXR image is dark, with no relevant information for diagnosis and potentially confusing DL models. In this work, the U-Net model extracts the region of interest from CXRs and the segmented images are fed to the DL models for feature extraction. Eight different convolutional neural networks (CNN) models are employed in our experiments, and their classification performance is compared based on three publicly available CXR datasets. The U-Net model achieves segmentation accuracy of 98.58%, intersection over union (IoU) of 93.10, and a Dice coefficient score of 96.50. Our proposed stacked ensemble algorithm performed better by achieving accuracy, sensitivity, and specificity values of 98.38%, 98.89%, and 98.70%, respectively. Experimental results confirm that segmented lung CXR images with ensemble learning produce a better result than un-segmented lung CXR images.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call