Abstract

This paper develops ensemble machine learning model for the prediction of dead oil, saturated and undersaturated viscosities. Easily acquired field data have been used as the input parameters for the machine learning process. Different functional forms for each property have been considered in the simulation. Prediction performance of the ensemble model is better than the compared commonly used correlations based on the error statistical analysis. This work also gives insight into the reliability and performance of different functional forms that have been used in the literature to formulate these viscosities. As the improved predictions of viscosity are always craved for, the developed ensemble support vector regression models could potentially replace the empirical correlation for viscosity prediction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.