Abstract

Recently, manifold regularized semi-supervised learning (MRSSL) received considerable attention, because it successfully exploits the geometry of the intrinsic data probability distribution to leverage the performance of a learning model. As a natural nonlinear generalization of graph Laplacian, p-Laplacian has been proved having the rich theoretical foundations to better preserve the local structure. However, it is difficult to determine the fitting graph p-Lapalcian, i.e., the parameter p, which is a critical factor for the performance of graph p-Laplacian. Therefore, we develop an ensemble p-Laplacian regularization (EpLapR) to fully approximate the intrinsic manifold of the data distribution. EpLapR incorporates multiple graphs into a regularization term in order to sufficiently explore the complementation of graph p-Laplacian. Specifically, we construct a fused graph by introducing an optimization approach to assign suitable weights on different p value graphs. And then, we conduct semi-supervised learning framework on the fused graph. Extensive experiments on UC-Merced dataset and Scene 15 dataset demonstrate the effectiveness and efficiency of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.