Abstract

Liang et al. [A fast and accurate online sequential learning algorithm for feedforward networks, IEEE Transactions on Neural Networks 17 (6) (2006), 1411–1423] has proposed an online sequential learning algorithm called online sequential extreme learning machine (OS-ELM), which can learn the data one-by-one or chunk-by-chunk with fixed or varying chunk size. It has been shown [Liang et al., A fast and accurate online sequential learning algorithm for feedforward networks, IEEE Transactions on Neural Networks 17 (6) (2006) 1411–1423] that OS-ELM runs much faster and provides better generalization performance than other popular sequential learning algorithms. However, we find that the stability of OS-ELM can be further improved. In this paper, we propose an ensemble of online sequential extreme learning machine (EOS-ELM) based on OS-ELM. The results show that EOS-ELM is more stable and accurate than the original OS-ELM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.