Abstract
A stochastic kinematic wave model for open channel flow is developed under uncertain channel properties and uncertain lateral flow conditions. Applying a known methodology, the Fokker-Planck equation (FPE) of the kinematic open-channel flow process under uncertain channel properties and uncertain lateral flow conditions is derived using the method of characteristics. Because every stochastic partial differential equation has a one-to-one relationship with a nonlocal Lagrangian-Eulerian Fokker-Planck equation (LEFPE), the LEFPE for the governing equation of any hydrologic or hydraulic process can be developed as the physically based stochastic model of the particular process. To quantify the ensemble behavior of a process, LEFPE provides a quantitative description of the time-space evolution of the probability density function of the state variables of the process at one shot. The nonlocal LEFPE reduces to the classical local FPE, which is more convenient to solve, under certain assumptions. The developed ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.