Abstract
Our objectives were to (1) employ ensemble machine learning algorithms utilizing real-world clinical data to predict 90-day prognosis, including dialysis dependence and mortality, following the first hospitalized dialysis and (2) identify the significant factors associated with overall outcomes. We identified hospitalized patients with Acute kidney injury requiring dialysis (AKI-D) from a dataset of the Taipei Medical University Clinical Research Database (TMUCRD) from January 2008 to December 2020. The extracted data comprise demographics, comorbidities, medications, and laboratory parameters. Ensemble machine learning models were developed utilizing real-world clinical data through the Google Cloud Platform. The Study Analyzed 1080 Patients in the Dialysis-Dependent Module, Out of Which 616 Received Regular Dialysis After 90 Days. Our Ensemble Model, Consisting of 25 Feedforward Neural Network Models, Demonstrated the Best Performance with an Auroc of 0.846. We Identified the Baseline Creatinine Value, Assessed at Least 90 Days Before the Initial Dialysis, as the Most Crucial Factor. We selected 2358 patients, 984 of whom were deceased after 90 days, for the survival module. The ensemble model, comprising 15 feedforward neural network models and 10 gradient-boosted decision tree models, achieved superior performance with an AUROC of 0.865. The pre-dialysis creatinine value, tested within 90 days prior to the initial dialysis, was identified as the most significant factor. Ensemble machine learning models outperform logistic regression models in predicting outcomes of AKI-D, compared to existing literature. Our study, which includes a large sample size from three different hospitals, supports the significance of the creatinine value tested before the first hospitalized dialysis in determining overall prognosis. Healthcare providers could benefit from utilizing our validated prediction model to improve clinical decision-making and enhance patient care for the high-risk population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.