Abstract

This paper introduces a new topic and research of geometric classifier ensemble learning using two types of objects: classifier prediction pairwise matrix (CPPM) and decision profiles (DPs). Learning from CPPM requires using Riemannian manifolds (R-manifolds) of symmetric positive definite (SPD) matrices. DPs can be used to build a Grassmann manifold (G-manifold). Experimental results show that classifier ensembles and their cascades built using R-manifolds are less dependent on some properties of individual classifiers (e.g. depth of decision trees in random forests (RFs) or extra trees (ETs)) in comparison to G-manifolds and Euclidean geometry. More independent individual classifiers allow obtaining R-manifolds with better properties for classification. Generally, the accuracy of classification in nonlinear geometry is higher than in Euclidean one. For multi-class problems, G-manifolds perform similarly to stacking-based classifiers built on R-manifolds of SPD matrices in terms of classification accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call