Abstract
Keyphrase extraction is a task with many applications in information retrieval, text mining, and natural language processing. In this paper, a keyphrase extraction approach based on neural network ensemble is proposed. To determine whether a phrase is a keyphrase, the following features of a phrase in a given document are adopted: its term frequency, whether to appear in the title, abstract or headings (subheadings), and its frequency appearing in the paragraphs of the given document. The approach is evaluated by the standard information retrieval metrics of precision and recall. Experiment results show that the ensemble learning can significantly increase the precision and recall.KeywordsNeural NetworkClass LabelFeature SubsetEnsemble LearnAdaBoost AlgorithmThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.