Abstract
Development of traditional food competes with other traditional foods now. They must compete with fast food and food from abroad. In 2013, the food and beverage sector were the second highest contributor to tourist expenditure after accommodation. This shows its very important role in the economy. That caused, we need a model that can predict traditional Indonesian foods and snacks. We used ensemble learning. It had 2 transfer learning methods, namely VGG-19 and Xception. They will be combined to improve the performance of the existing model. The research result shown output. It has found that the ensemble learning model achieved accuracy of up to 97% on training data and 91% on testing data. It is hoped that this prediction model can help people recognize typical Indonesian food and increase interest in and preserve the food around them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.