Abstract

The Internet of Things (IoT) is a paradigm that connects a range of physical smart devices to provide ubiquitous services to individuals and automate their daily tasks. IoT devices collect data from the surrounding environment and communicate with other devices using different communication protocols such as CoAP, MQTT, DDS, etc. Study shows that these protocols are vulnerable to attack and prove a significant threat to IoT telemetry data. Within a network, IoT devices are interdependent, and the behaviour of one device depends on the data coming from another device. An intruder exploits vulnerabilities of a device's interdependent feature and can alter the telemetry data to indirectly control the behaviour of other dependent devices in a network. Therefore, securing IoT devices have become a significant concern in IoT networks. The research community often proposes intrusion Detection Systems (IDS) using different techniques. One of the most adopted techniques is machine learning (ML) based intrusion detection. This study suggests a stacking-based ensemble model makes IoT devices more intelligent for detecting unusual behaviour in IoT networks. The TON-IoT (2020) dataset is used to assess the effectiveness of the proposed model. The proposed model achieves significant improvements in accuracy and other evaluation measures in binary and multi-class classification scenarios for most of the sensors compared to traditional ML algorithms and other ensemble techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.