Abstract

Maternal health is an important aspect of women's health during pregnancy, childbirth, and the postpartum period. Specifically, during pregnancy, different health factors like age, blood disorders, heart rate, etc. can lead to pregnancy complications. Detecting such health factors can alleviate the risk of pregnancy-related complications. This study aims to develop an artificial neural network-based system for predicting maternal health risks using health data records. A novel deep neural network architecture, DT-BiLTCN is proposed that uses decision trees, a bidirectional long short-term memory network, and a temporal convolutional network. Experiments involve using a dataset of 1218 samples collected from maternal health care, hospitals, and community clinics using the IoT-based risk monitoring system. Class imbalance is resolved using the synthetic minority oversampling technique. DT-BiLTCN provides a feature set to obtain high accuracy results which in this case are provided by the support vector machine with a 98% accuracy. Maternal health exploratory data analysis reveals that the health conditions which are the strongest indications of health risk during pregnancy are diastolic and systolic blood pressure, heart rate, and age of pregnant women. Using the proposed model, timely prediction of health risks associated with pregnant women can be made thus mitigating the risk of health complications which helps to save lives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.