Abstract
Face recognition system is a state-of-the-art computer vision application within the artificial intelligence arena. Face recognition is the automated recognition of humans for their names/unique ID. The age invariant face recognition is a challenge task in the field of face recog-nition. In this work, we have introduced a stacked support vector machine where kernel activation of prototype examples is combined in nonlinear ways. The proposed work integrates soft compu-ting-based support vector machine (SVM) with deep SVM. The proposed model uses the implied relation between the variables described above in order to optimize their overall performance. Specifically, our method uses three different stages of complex convolution neural networks that detect and analyze the location of faces position and landmarks. This work has introduced cross-age celebrity dataset (CACD) for both single as well as cross-database enabling the transition of age. The proposed work has been implemented in the MATLAB simulation tool considering CACD dataset. Experimental results indicate that our techniques significantly outperform other strategies across a range of challenging metrics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.