Abstract

Soil aggregates are crucial for soil organic carbon (OC) accumulation. This study, utilizing a 32-year fertilization experiment, investigates whether the core microbiome can elucidate variations in carbon content and decomposition across different aggregate sizes more effectively than broader bacterial and fungal community analyses. Employing ensemble learning algorithms that integrate machine learning with network inference, we found that the core microbiome accounts for an average increase of 26 % and 20 % in the explained variance of PCoA and Adonis analyses, respectively, in response to fertilization. Compared to the control, inorganic and organic fertilizers decreased the decomposition index (DDI) by 31 % and 38 %, respectively. The fungal core microbiome predominantly influenced OC content and DDI in larger macroaggregates (>2000 μm), explaining over 35 % of the variance, while the bacterial core microbiome had a lesser impact, explaining <30 %. Conversely, in smaller aggregates (<2000 μm), the bacterial core microbiome significantly influenced DDI (R2 > 0.2), and the fungal core microbiome more strongly affected OC content (R2 > 0.3). Mantel tests showed that pH is the most significant environmental factor affecting core microbiome composition across all aggregate sizes (Mantel's r > 0.8, P < 0.01). Linear correlation analysis further confirmed that the core microbiome's community structure could accurately predict OC content and DDI in aggregates (R2 > 0.8, P < 0.05). Overall, our findings suggested that the core microbiome provides deeper insights into the variability of aggregate organic carbon content and decomposition, with the bacterial core microbiome playing a particularly pivotal role within the soil aggregates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.