Abstract
Cognitive radio (CR), non-orthogonal multiple access (NOMA), and full-duplex (FD) communications have been considered key technologies for providing spectrum utilization improvement and higher energy efficiency on the internet of things (IoT) networks and next-generation communication. However, security concerns are still an issue to be addressed because confidential information is exposed in wireless systems. To solve this problem, we design a novel artificial intelligence (AI)-based framework for maximizing the secrecy energy efficiency (SEE) in FD cooperative relay underlay CR-NOMA systems that are exposed to multiple eavesdroppers. First, we formulate the non-convex SEE optimization problem as bi-level optimization, subject to constraints that satisfy the quality-of-service requirements of secondary users. In particular, the outer problem is solved with ensemble learning (EL) to select the optimal relay. Regarding the inner problem, we propose a quantum particle swarm optimization (QPSO)-based technique to optimize power allocation. In addition, for comparison purposes, we describe a cooperative relay CR network with orthogonal multiple access (OMA), rate-splitting multiple access (RSMA), and half-duplex technologies. Moreover, we evaluate comparative schemes based on machine learning algorithms and swarm intelligence baseline schemes. Furthermore, the proposed EL-aided QPSO-based framework achieves performance close to the optimal solutions, with a meaningful reduction in computation complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Green Communications and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.