Abstract

Enforcing sparse structure within learning has led to significant advances in the field of data-driven discovery of dynamical systems. However, such methods require access not only to timeseries of the state of the dynamical system, but also to the time derivative. In many applications, the data are available only in the form of time-averages such as moments and autocorrelation functions. We propose a sparse learning methodology to discover the vector fields defining a (possibly stochastic or partial) differential equation, using only time-averaged statistics. Such a formulation of sparse learning naturally leads to a nonlinear inverse problem to which we apply the methodology of ensemble Kalman inversion (EKI). EKI is chosen because it may be formulated in terms of the iterative solution of quadratic optimization problems; sparsity is then easily imposed. We then apply the EKI-based sparse learning methodology to various examples governed by stochastic differential equations (a noisy Lorenz 63 system), ordinary differential equations (Lorenz 96 system and coalescence equations), and a partial differential equation (the Kuramoto-Sivashinsky equation). The results demonstrate that time-averaged statistics can be used for data-driven discovery of differential equations using sparse EKI. The proposed sparse learning methodology extends the scope of data-driven discovery of differential equations to previously challenging applications and data-acquisition scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.