Abstract

We consider the solution of inverse problems in dynamic contrast–enhanced imaging by means of Ensemble Kalman Filters. Our quantity of interest is blood perfusion, i.e. blood flow rates in tissue. While existing approaches to compute blood perfusion parameters for given time series of radiological measurements mainly rely on deterministic, deconvolution–based methods, we aim at recovering probabilistic solution information for given noisy measurements. To this end, we model radiological image capturing as sequential data assimilation process and solve it by an Ensemble Kalman Filter. Thereby, we recover deterministic results as ensemble–based mean and are able to compute reliability information such as probabilities for the perfusion to be in a given range. Our target application is the inference of blood perfusion parameters in the human brain. A numerical study shows promising results for artificial measurements generated by a Digital Perfusion Phantom.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.