Abstract

Abstract This study utilizes an ensemble Kalman filter (EnKF) to assess the impact of assimilating observations of Hurricane Karl from the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a new Doppler radar on board the NASA Global Hawk unmanned airborne system, which has the benefit of a 24–26-h flight duration, or about 2–3 times that of a conventional aircraft. The first HIWRAP observations were taken during NASA’s Genesis and Rapid Intensification Processes (GRIP) experiment in 2010. Observations considered here are Doppler velocity (Vr) and Doppler-derived velocity–azimuth display (VAD) wind profiles (VWPs). Karl is the only hurricane to date for which HIWRAP data are available. Assimilation of either Vr or VWPs has a significant positive impact on the EnKF analyses and forecasts of Hurricane Karl. Analyses are able to accurately estimate Karl’s observed location, maximum intensity, size, precipitation distribution, and vertical structure. In addition, forecasts initialized from the EnKF analyses are much more accurate than a forecast without assimilation. The forecasts initialized from VWP-assimilating analyses perform slightly better than those initialized from Vr-assimilating analyses, and the latter are less accurate than EnKF-initialized forecasts from a recent proof-of-concept study with simulated data. Likely causes for this discrepancy include the quality and coverage of the HIWRAP data collected from Karl and the presence of model error in this real-data situation. The advantages of assimilating VWP data likely include the ability to simultaneously constrain both components of the horizontal wind and to circumvent reliance upon vertical velocity error covariance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call