Abstract

Long records of wave parameters are central to the estimation of coastal flooding risk and the causes of coastal erosion. This paper leverages the predictive power of wave height history and correlations with wind speed and direction to build statistical models for time series of wave heights to develop a method to fill data-gaps and extend the record length of coastal wave observations. A threshold regression model is built where the threshold parameter, based on lagged wind speed, explains the nonlinear associations, and the lagged predictors in the model are based on a well-established empirical wind-wave relationship. The predictive model is completed by addressing the residual conditional heteroscedasticity using a GARCH model. This comprehensive model is trained on time series data from 2005 to 2013, using wave height and wind data both observed from a buoy in Long Island Sound. Subsequently, replacing wind data with observations from a nearby coastal station provides a similar level of predictive accuracy. This approach can be used to hindcast wave heights for past decades given only wind information at a coastal station. These hindcasts are used as a representative of the unobserved past to carry out extreme value analysis by fitting Generalized Pareto (GP) distribution in a peaks over threshold (POT) framework. By analyzing longer periods of data, we can obtain reliable return value estimates to help design better coastal protection structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.