Abstract

AbstractThe historical climate record and seasonal temperature and precipitation records provide useful datasets for making short-term drought predictions. A variety of methods have exploited these resources, but few have quantitatively measured uncertainties associated with predictions of drought index values commonly used in management plans. In this paper, stochastic approaches for estimating uncertainty are applied to drought index predictions. National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) seasonal forecasts and resampling of nearest-neighbor residuals are incorporated to measure uncertainty in monthly forecasts of Palmer drought severity index (PDSI) and standardized precipitation index (SPI) in central South Carolina. Kuiper skill scores of PDSI indicate good forecast performance with up to 3-month lead time and improvements for 1-month-lead SPI forecasts. NOAA CPC climate outlook improved the forecast skill by as much as 40%, and the degree of improvement varies by season and forecast lead time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.