Abstract

Diarrheal disease is the second largest cause of mortality in children younger than 5, yet our ability to anticipate and prepare for outbreaks remains limited. Here, we develop and test an epidemiological forecast model for childhood diarrheal disease in Chobe District, Botswana. Our prediction system uses a compartmental susceptible-infected-recovered-susceptible (SIRS) model coupled with Bayesian data assimilation to infer relevant epidemiological parameter values and generate retrospective forecasts. Our model inferred two system parameters and accurately simulated weekly observed diarrhea cases from 2007-2017. Accurate retrospective forecasts for diarrhea outbreaks were generated up to six weeks before the predicted peak of the outbreak, and accuracy increased over the progression of the outbreak. Many forecasts generated by our model system were more accurate than predictions made using only historical data trends. Accurate real-time forecasts have the potential to increase local preparedness for coming outbreaks through improved resource allocation and healthcare worker distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.