Abstract

Microarray technology facilitates the simultaneous measurement of expression of tens of thousands of genes and enables us to study cancers and tumors at the molecular level. Because microarray data are typically characterized by small sample size and high dimensionality, accurate and stable feature selection is thus of fundamental importance to the diagnostic accuracy and deep understanding of disease mechanism. Hence, we in this study present an ensemble feature selection framework to improve the discrimination and stability of finally selected features. Specifically, we utilize sampling techniques to obtain multiple sampled datasets, from each of which we use a base feature selector to select a subset of features. Afterwards, we develop two aggregation strategies to combine multiple feature subsets into one set. Finally, comparative experiments are conducted on four publicly available microarray datasets covering both binary and multi-class cases in terms of classification accuracy and three stability metrics. Results show that the proposed method obtains better stability scores and achieves comparable to and even better classification performance than its competitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call