Abstract
In a disordered system one can either consider a microcanonical ensemble, where there is a precise constraint on the random variables, or a canonical ensemble where the variables are chosen according to a distribution without constraints. We address the question as to whether critical exponents in these two cases can differ through a detailed study of the random transverse-field Ising chain. We find that the exponents are the same in both ensembles, though some critical amplitudes vanish in the microcanonical ensemble for correlations which span the whole system and are particularly sensitive to the constraint. This can \textit{appear} as a different exponent. We expect that this apparent dependence of exponents on ensemble is related to the integrability of the model, and would not occur in non-integrable models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.