Abstract
In recent years, classification of colon biopsy images has become an active research area. Traditionally, colon cancer is diagnosed using microscopic analysis. However, the process is subjective and leads to considerable inter/intra observer variation. Therefore, reliable computer-aided colon cancer detection techniques are in high demand. In this paper, we propose a colon biopsy image classification system, called CBIC, which benefits from discriminatory capabilities of information rich hybrid feature spaces, and performance enhancement based on ensemble classification methodology. Normal and malignant colon biopsy images differ with each other in terms of the color distribution of different biological constituents. The colors of different constituents are sharp in normal images, whereas the colors diffuse with each other in malignant images. In order to exploit this variation, two feature types, namely color components based statistical moments (CCSM) and Haralick features have been proposed, which are color components based variants of their traditional counterparts. Moreover, in normal colon biopsy images, epithelial cells possess sharp and well-defined edges. Histogram of oriented gradients (HOG) based features have been employed to exploit this information. Different combinations of hybrid features have been constructed from HOG, CCSM, and Haralick features. The minimum Redundancy Maximum Relevance (mRMR) feature selection method has been employed to select meaningful features from individual and hybrid feature sets. Finally, an ensemble classifier based on majority voting has been proposed, which classifies colon biopsy images using the selected features. Linear, RBF, and sigmoid SVM have been employed as base classifiers. The proposed system has been tested on 174 colon biopsy images, and improved performance (=98.85%) has been observed compared to previously reported studies. Additionally, the use of mRMR method has been justified by comparing the performance of CBIC on original and reduced feature sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.