Abstract

Classification plays a critical role in false positive reduction (FPR) in lung nodule computer aided detection (CAD). The difficulty of FPR lies in the variation of the appearances of the nodules, and the imbalance distribution between the nodule and non-nodule class. Moreover, the presence of inherent complex structures in data distribution, such as within-class imbalance and high-dimensionality are other critical factors of decreasing classification performance. To solve these challenges, we proposed a hybrid probabilistic sampling combined with diverse random subspace ensemble. Experimental results demonstrate the effectiveness of the proposed method in terms of geometric mean (G-mean) and area under the ROC curve (AUC) compared with commonly used methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.