Abstract

Abstract. Sea ice in the Baffin Bay plays an important role in deep water formation in the Labrador Sea and contributes to the variation of the Atlantic meridional overturning circulation (AMOC) on larger scales. Sea-ice data from locally merged satellite observations (Sat-merged SIT) in the eastern Canadian Arctic and three state-of-the-art sea ice–ocean models are used to quantify sea-ice volume variations from 2011 to 2016. Ensemble-based sea-ice volume (SIV) fluxes and the related standard deviations in the Baffin Bay are generated from four different estimates of SIV fluxes that were derived from Sat-merged SIT, three modeled SITs and satellite-based ice-drift data. Results show that the net increase in the SIV in Baffin Bay occurs from October to early April with the largest SIV increase in December (113 ± 17 km3 month−1) followed by a reduction from May to September with the largest SIV decline in July (−160 ± 32 km3 month−1). The maximum SIV inflow occurs in winter with the amount of 236 (±38) km3 while ice outflow reaches the maximum in spring with a mean value of 168 (±46) km3. The ensemble mean SIV inflow reaches its maximum (294 ± 59 km3) in winter 2013 caused by high ice velocity along the north gate while the largest SIV outflow (229 ± 67 km3) occurs in spring of 2014 due to the high ice velocity and thick ice along the south gate. The long-term annual mean ice volume inflow and outflow are 411 (±74) km3 yr−1 and 312 (±80) km3 yr−1, respectively. Our analysis also reveals that, on average, sea ice in the Baffin Bay melts from May to September with a net reduction of 335 km3 in volume while it freezes from October to April with a net increase of 218 km3. In the melting season, there is about 268 km3 freshwater produced by local melting of sea ice in the Baffin Bay. In the annual mean, the mean freshwater converted from SIV outflow that enters the Labrador Sea is about 250 km3 yr−1 (i.e., 8 mSv), while it is only about 9 % of the net liquid freshwater flux through the Davis Strait. The maximum freshwater flux derived from SIV outflow peaks in March is 65 km3 (i.e., 25 mSv).

Highlights

  • Baffin Bay is a semi-enclosed basin between Ellesmere Island, Baffin Island and Greenland

  • As found by Meier et al (2006), the maximum extent occurs in March while July is the last month when sea ice is still left, and the ice freeze-up starts in October

  • We present the spatial distribution of sea-ice thickness (SIT), especially in July when satellite-based SIT is not available due to melting processes

Read more

Summary

Introduction

Baffin Bay is a semi-enclosed basin between Ellesmere Island, Baffin Island and Greenland. This bay serves as an important pathway of southward flowing and cold freshwater draining off from the Arctic into the North Atlantic Oceans (Curry et al, 2010, 2014). The sea-ice condition in Baffin Bay im-. C. Min et al.: Ensemble-based estimation of sea-ice volume variations pacts wildlife habitations (Ferguson et al, 2000; Laidre and Heide-Jørgensen, 2004; Spencer et al, 2014). Marine-based activities, such as shipping, are strongly influenced by the sea-ice conditions in the bay (Pizzolato et al, 2016). Understanding the sea-ice variations in the Baffin Bay is of strong interest for climate change research and for stakeholders

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call