Abstract

This paper investigates the key synoptic-scale factors that affected the forecasting of mesoscale rainfall and snowfall and their associated uncertainties in a heavy rain–snow event in northeastern China on 18–20 November 2020, using ensemble-based sensitivity analysis based on global ensemble forecasts from the European Centre for Medium-Range Weather Forecasts. The heavy precipitation event was attributed to an extratropical cyclone and experienced two stages, with the snowfall stage having a better precipitation forecast skill than the rainfall stage. The mesoscale rainfall and snowfall were caused by a mesoscale rainband over Liaoning Province and two mesoscale snowbands over Heilongjiang Province, respectively, and they showed some differences with respect to their forecast skill and related key synoptic-scale factors contributing to the precipitation centers. The precipitation amount in the two different stages was correlated significantly with the midlevel trough and sensitive to the location and intensity of the low-level vortex (surface cyclone), and particularly the low-level jets and the associated water vapor transport. However, some differences were confirmed in the two different stages: the weaker midlevel trough and accompanying weaker low-level temperature trough in the rainfall stage were related to increased precipitation because the midlevel trough was far away from the control area, while the stronger midlevel trough and accompanying stronger low-level temperature trough were associated with increased precipitation in the snowfall stage. In addition to the synoptic-scale low-level jet (SLLJ), the precipitation in the rainfall stage was also affected by a boundary layer jet (BLJ) over the ocean, while only SLLJs were present in the snowfall stage. The uncertainty of the precipitation forecast was derived mainly from the uncertainty in the strength and location of the SLLJs and BLJ. Notably, the intensity of northeasterly winds west of the low-level vortex may affect the predictability of heavy snowfall.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call