Abstract

AbstractHelicopter component load estimation can be achieved through a variety of machine learning techniques and algorithms. A range of ensemble integration techniques were investigated in order to leverage multiple machine learning models to estimate main rotor yoke loads from flight state and control system parameters. The techniques included simple averaging, weighted averaging and forward selection. Performance of the models was evaluated using four metrics: root mean squared error, correlation coefficient and the interquartile ranges of these two metrics. When compared, every ensemble outperformed the best individual model. The ensembles using forward selection achieved the best performance. The resulting output is more robust, more highly correlated and achieves lower error values as compared to the top individual models. While individual model outputs can vary significantly, confidence in their results can be greatly increased through the use of a diverse set of models and ensemble techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call