Abstract

Abstract Genome editing has become a vital tool in medical biology research. The critical mission of facilitating the progress of genome editing is to enrich different genes into positive edited cells quickly and effectively and carry out the targeted research. In recent years, researchers have established various reporter systems for selection and enrichment of editing-induced positive cells, which are based on genome repair mechanisms, such as non-homologous end joining, homology-directed repair, single strand annealing and inversion, and the principle of the expression of fluorescent protein or resistance tag after genome repair. The T7E1 assay or sequencing method can analyze the mutation of enriched cells with the results of lower background signals and higher mutation ratio. Therefore, these reporter systems can profit the characterization of genome editing effectiveness. Besides, positive cells can be cultured continuously, so this technology possesses a promising prospect in mutated cell line construction and the research of mutated cell functions. This article summarized the design principles and applications of these reporter systems and would provide a reference to construct a more perfecte evaluating system for genome editing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call