Abstract

Marine-derived nutrients are known accumulate in seabird breeding colonies due to the deposition of nutrient-rich biological materials, thus greatly altering the functioning and dynamics of these terrestrial ecosystems. Here we present the results of a sampling survey carried out during three years in yellow-legged gull colonies in the Atlantic Islands of Galicia National Park (NW Spain) with the aim of evaluating the influence of the colonies on the accumulation of trace elements, including micronutrients (Cu, Zn, Se, Co, Mo, Ni) and toxic elements (Cr, Cd, Hg, Pb, As, Ag), in the surrounding environments. For this purpose, we analysed samples of biological materials produced by the seabirds (pellets, excrement, feathers, eggs) and of soil, plants and inland water from several different subcolonies and control zones without seabirds.The concentrations of most of the elements were higher in excrement and pellets (mean values: Zn: 152, As: 50 mg kg−1, Cd: 6, Co: 5 mg kg−1) than in feathers and eggs. The flow of trace elements into the breeding colonies, considering only the excrement, revealed a very high level of trace element deposition for a supposedly pristine environment (Zn: 2667, Cd: 70, Cu: 315, As: 64 g ha−1). The total concentrations of trace elements in soil were consistent with the long-term impact of the seabirds. Thus, the values in areas which this impact was greatest were significantly higher than in the control zones, particularly considering the most labile geochemical fractions of the soil. The concentrations of some elements (i.e. Co, As, Cd) were also higher in the inland waters in the colonies than in control zones. Finally, the concentration of trace elements in plants varied depending on the species and element considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.